Conformal Mapping

★★★★★Graduate+

📖Definition

A conformal mapping preserves angles. Analytic functions are conformal where f'(z) ≠ 0. It transforms complex regions to simpler ones.

📐Formulas

w = f(z), f'(z₀) ≠ 0

Condition for conformality

w = (az + b)/(cz + d), ad - bc ≠ 0

Möbius transformation (LFT)

w = e^z

Strip to wedge

w = (z - i)/(z + i)

Cayley transform (half-plane → unit disk)

✏️Examples

예제 1

Describe how w = z² maps first quadrant.

예제 2

Explain why Möbius maps circles to circles.

📜History

Discovered by: Bernhard Riemann (1851)

Riemann Mapping Theorem: Simply connected regions are conformally equivalent to the unit disk.

Applications

Fluid Mechanics

Airfoil flow (Joukowski)

Electromagnetism

Electrostatic problems

Cartography

Map projections

🔗Related Documents

Next Topics

Related

#등각사상#뫼비우스#conformal#Möbius