🔢

Quadratic Residues

★★★★☆Undergraduate

📖Definition

An integer a is a quadratic residue mod n if there exists x such that x² ≡ a (mod n).

📐Formulas

((a)/(p)) = \begincases 1 & QR \\ -1 & QNR \\ 0 & p|a \endcases

Legendre symbol

((a)/(p)) ≡ a^(p-1)/2 ±odp

Euler's criterion

((-1)/(p)) = (-1)^(p-1)/2

Condition for -1 being QR

✏️Examples

예제 1

Find all quadratic residues mod 7.

예제 2

Is 3 a quadratic residue mod 11?

Applications

Cryptography

Square root computation, zero-knowledge

Number Theory

Quadratic reciprocity

Primality Testing

Solovay-Strassen test

🔗Related Documents

#이차잉여#르장드르#quadratic residue#Legendre